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CLASSIFICATION OF FLOWS IN AIR SHOCK TUBES

fG. M. Arutyunyan

(Moscow)

Examined are the possible types of flow with constant pressure

'behind the front of a shock wave with arbitrary variation of initial

• pressures in the sections of the shock tube and of the geometric di-

mensions of the tube. It is assumed that the low pressure section of

the shock tube has an open end.

I. Formulation of Problem. Consider. a shock tube of constant

cross section (Fig. i) having a low, pressure section with an open end.

Let the air in the high pressure section of length I be ina state of

compression (C); and that in the low pressure section of length z, in

the state (0). We shall assume that the air in both sections is in

thermal equilibrium with the ambient medium.

When the diaphragm is swiftly demolished (Fig. 2), a shock wave

(S) begins to propagate to the right (through the 'low pressure medium)

and a centered rarefaction wave (I) to the left (through the high

pressure medium). In addition, there is formed contact discontinuity

K which is carried to the right by the flow. At this discontinuity

S
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all the parameters of the medium with the exception of the pressure

and particle velocity undergo Jump variations.

The pressure p in the front formed by the shock wave may be

determined from the relationship (cp. Grib [I])

. .(k -1),(p_ 11 (..-.)
P. I (I, -+I) P. I P.T(k--lj I) "

where pc and Po are the initial pressures in the sections of the shock

tube, and k is the isentropic exponent.

After the rarefaction wave"(I) reaches the closed end of the

tube, its reflection begins, forming a new wave, the front of which is

propagated. to the right with the velocity of weak disturbances u + c

(u is the particle velocity, and c is the local speed of sound).

"At the moment the shock wave reaches the open end of .the shock

tube, a rarefaction wave is generated, the front of :which will propa-

gate to the left with a velocity u - c.

~'t
PA

I ~~(SI *I) '

(C) \_ _.._ I

-0 .

Fig. I. Fig. .2. Fig. 3.

Thus in the general case .two disturbances will be propagated in

"a shock tube with respect to the homogeneous states (S) and (K) in

opposite directions: a disturbance from the closed end of the shock

tube and a disturbance from its open end.

It is known that at a fixed distance from the diaphragm x

(x > 0) the variation of the pressure in the shock tube through time

FTD-TT-63-309/i+2+4 -2-



has the form shown in Fig. 3.. The shock wave has some constant pres-

sure area of length AT', which arises when the shock wave front reaches

the given point and disappears when the disturbance from the open or

closed end of the shock tube reaches this point.

In practical work on shock tubes it is impprtant to know the size

of this area, within the confines of which the homogeneous flows (S)-

..and (K) and the contact discontinuity-dividing them-are .located.

"In general,- the quantity"AT is 'a function of five parameters:

po.,•P.L, V, and x.:

- 2.,. Some !Neecessary. Relatibnships'. Let us' determine the conditions

' under which (Fig. 4) the right hand-boundary of rarefaction wave (I)

" will: propagate to.the left, remain in place,• or propagate to the

right. '"In other words, it is necessary to find the conditions under

"which

L< ck. Cka " s> C& (2.1J)

It may be shown that

k-i p. k" I

.1= k-(i PS, 7 CkO ) " (2.2)

Hence the conditions in.(2.i)'may be presented respectively in

the form:

2k 2k
P8  2 P-2 f__

2 
_--P P 2

p>.-\-i/ p -•,k+jJ. • pc \k+i (2.3)

C onverting.from..pc topo with the aid'of (1.1), we get' for the'

case of air(k 1.4)

< 2.89. > -.2.(294
PO%

respectively.
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It may be shown [2] that

I-k -I -L•u-ck) (c\,- , I- --'~k (2.5)
C C) (2-5

After solving the equations of. the characteristic y. and the

trajectory of the contact discontinuity simultaneously (Fig. 4)for

the coordinate of the point c we obtain

I - " ""3-k

.. €x 21!! (= *2- (2.6 )
CIL C . 7c- Ck

From the simultaneous solution ofthe equations'of the character-,

. i'stic y and. thetraJecto..ry of the front of the shock wave, the fol-

' .owirng.expressibn.may be obtained for the x-coordinate of their point

"of intersection d"

Zd=. . (2.7)

where D is the velocity of the front of the shock wave. Let us intro-

"duce the dimensionless quantity

2D C, 1 :3-kI . 1,[•• (2.8)

... Then it can be maintained that the disturbance from the closed end of

the shock tube is successful in leaving the front of the shock wave

behind, over the length L, if L/i- > wl; is not successful in leaving

the front of the shock wave behind over the length L, if L/7 < Mi.

After solving the equation of the characteristic 72 (Fig. 5)

together with the equation of the trajectory of the contact discon-

•tinuity, we obtain-the following expression for the coordinate of the

"point f_:

D L . D+ C.,--,.) , L ( + ,- -, . (2 .9 )
• .)
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Introducing next the dimensionless .quantity

2D '

(2.10).'' D- c. . , .k

..-and making use of (2.6) and.(2.9), we come to'the following conclu-

sion: the disturbance from the closed end of the shock tube encounters,

the surface of the contact discontinuity before the disturbance from

the open end, if L/I > ( 2 ; the.disturbance from -the open end of. the

shock tube encounters the surface of the contact discontinuity before

the disturbance from the closed end, if LA.<" w2 ; both disturbances

encounter the surface of the contact :discontinuity simnultaneously, if

'L/1 •(02.

Simultaneous solution of the equations df'the -characteristics -y

and •y allows.us to.obtain for -the. x-coordinate of: the point'h. the

expression:.

L(uý"ck) (D+ '-u') +" f(u c "
2c/ +jk- (2.1ii)

Then, 'introducing. the dimensionless quantity'.: .

"3 = "-( "' Z . . : 2.12)c k e ( c k + ' u , ) ( D + - C a , , € . •. .

it. is possible to, assert that

0'1. h O when "/i 'l .i ". 'x,>O, vem L I •> a

The intersection point e-of the .characteristics -y. and 73 has the

coordinate

.e = ,? c)( • /P +a(, •.-= - ----- ) 1 (2.13)
'2c.

Let, us. introduce the dimensionless quantities
2 cUD (u, -- ck.)

ck [2C.D - (u + c.) (D + c. =-,)IJ (Ck) 2.11)

cD (U- ek) 1kI-aT )iI a U--Ck (Co "
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Then

xh>L whenLII<aj. x,1=L when L / I= a,. xh<L wihen L11>avu
xxlwhen L/1<ca2,. rb =yxlwken L / I = . 2- <T when LII> C1

XbLwheh LiZ<az, x~ =L when L/I=a,. xb<L whbf LI1>ux

.For'classification of the flows in the c~ase u C it is Advan-

taý,eous to ithtroduc6'the dimensionless qiiantities

, 2~ #- .(2.15)

*Then

X:F, when LI~< pl, :Zd =L [hen xd we L I >0,'

xc >L' wben L I <~ 2, L when. _LI =, x.<L wimie Lji>Pr

b>L. whern L/I < 0-3i. xb L 'when -L I =3 xb<L..vhe 'LIL>P3

Obvio t n.te-sz fusly, in. order to 'determin th ieo he 'donst'ant pres-

..sure'area it-is neces~sary to' single o.ut Ithe r.egiori'of 'constant pres-

sure p. p ,formed by the ,regioiis of -the homogeneo u S. flows(S - n

(K) in'the .xt plane..

Ingenia the bouindaries- of .the constant pressure region are

made up of the tr'ajectory ~of the f ronit. of the' shock wave*'and the char-.

acteristIcs _YO, -Y', Y3.,- 722 and -j3, and. for this reason a constant.

pressure region of ~.particular conf~igu~ration in'theý,xt~plane.rill

hereafter be c'alled a characteristic regiLme... -

*Let us. .show how man'y ,dfferent.-regimes there can be in a. shock

tube for a~rbitrary variation. o:f. the parameters p5,. po. , and I and

wihetthe-ir distinguishing characteristics, are.

.3.* Possible Characteristic Re~gimes for the Case u <-c .It is
s .k

possible" to show that for subsonic: flows 'the inequality

*h >-2 . (3-1)

will always hold'behind the contact,,discontinuity.,
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The case u s _ ck. We shall chQose the regime depicted in Fig. 5.

It.is characterized by the failure of the disturbance from the closed

end of the thbe.:to lea've the front of the shock wave behind over the

distance L; the disturbance from the open end of the shock tube en-

counters the surface of the contact discontinuity before the disturb-

..ance from its closed end; xh'.< 0. In other words, this regime, if it

is possible, should be characterized by simultaneous fulfillment 6f

• .the-relatiohships: ]/, <a 3 , L/i..< 6 2 , L/I.< C 3 . Taking into-account

'ine'qualities '(3. i)v, we shall require that L/l satisfy the condition"

• • , (5.2)

Obviously, here the first two conditions are fulfilled automat-

ically. consequently,, this. characteristic regime is possible in prin-

ciple, for. which it. is enough to requir'e fulfillment of condition.

With the aid 'of the equations of the trajectory of the shock

wave :front and the equations of the characteristics 72 and ys it is

possible. to determine the size of the constant pressure area in the

whole interval. 0K x < L2 . Other possible types of characteristic

regimes .lor"the case uS.< ck are-presented in Fig. 6. Also stated

there are the conditions under which they occur.

.. The case us ck. The possible characteristic regimes for the

case of-sonic flows behind the contact discontinuity are presented in

Fig. 7.

II. ,Possible Characteristic Regimes for the Case .ck K u ( cs.

We note that when the flow behind the contact discontinuity in a shock

tube becomes supersonic, it still remains .subsonic behind the shock

wave front. The possible characteristic regimes for the case

--8-



ck < us < c are considered below taking into account the fact that

under these conditions the relationship

,-.> W, > al > M"(2>. i)

is always true.

As an example, let us consider the regime depicted :in Fig. 8.,

It is characterized-by .the fact that the disturbance from the closed

end of the shock tube does not.have time to overtake the shock wave

' front on length L;..the disturbance from the open end qof the shock tube

"encounters the su'.rface of the contact discontinuity before the dis-

turbance from the closed end:

• ,,.... .. , .. , . •.x. • > L.' xb => •p .. x,>L"

"In.other words, this regime, if it is possible, should be char-

acterized by.simultaneous fulfillmentof the,'relationships:

rf.jl<,., L/i<{ . ,,Il<,:,. Ll<o•,. .LI<au.

We shall require that L/I satisfy the condition L/Z < a3.

Then the other conditions will be fulfilled automatically on the basis

of inequalities (41.1). Consequently,' this chariacteristic- regime is

possible in. principle. "

Other characteristic regimes possible. for the *case ck < us < cs

are presented in Fig.' 9 with a statement of the conditions under which

they occur.

Thus, when ck < u 5s < cs there can be no more than ii character-

istic regimes in the shock tube; the actual type of flow is determined

by the relationship between.the dimensionless quantities a), ( 2 , a1,

a2, and a3, and the value of L/l.
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5. Possible Characteristic Regimes for the Case us > cs. It is

possible to show that the relationship

S>.(5.0)

is always true for supersonic flows behind the shock wave front.

Consider the regime depicted in Fig. 10. It is characterized by

the relationships: .xd > L, xc > L,-. and xb > L. In other words, in i

order to realize such a flow the conditions L/' < 01, L/1 :< 02, and

L/. < P3 must be fulfilled simultaneously.

* We shall require that the inequality L/I < P3 be fulfilled. Then

the others will be-fulfilled automatically on the basis of .(5.1). Con-

sequently, this characteristic regime is also possible in principle.

.Other possible types of flow when us > cs are-given in Fig. ii.

Thus, when us > cs the characteristtic regime is determined by

the relationship between L/I and the dimensionless quantities f31, 132,

and P3. -

6. Conclusion. It has been established above that for arbitrary

variation of the parameters Ps, Po, L, and I there may exist in an

air shock tube 12 characteristic regimes when us ck, ii when

ck us < c s, and 7 when us > c . Altogether, therefore, no more

than thirty types of flow may exist in the shock tube.

It can be shown that to assume the existence of any other char-

acteristic regimes in addition to the thirty presented above would

mean violating conditions (3.1), (4.i), and (5.1).

The dimensionless quantities wl, M 2, M3., a,, a2 , C3, P1, P2, and

P.3 are functions only of the ratio ps/po. Presented in Fig. 12 are

the curves of these functions, which divide the graph plane into a

number of regions corresponding to the thirty possible characteristic

regimes considered above. This representation is convenient for
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determining t he type of flow for given values of the parametersps,

Po, L, and I (or Pc, Po, L, and 1). In fact, for this purpose it is

enough to form the ratios ps/po.:.and L/z and then establish-in which

of the characteristic regions in Fig. 12. the: point' determined by these

-ratios. in. the graph plane belongs.

lei

Fig. :12.
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